How to Connect Hadoop With Python?

10 minutes read

To connect Hadoop with Python, you can utilize the Hadoop Streaming API. Hadoop Streaming allows you to write MapReduce programs in any programming language, including Python.


Here are the steps to connect Hadoop with Python:

  1. Install Hadoop: Begin by installing Hadoop on your machine or set up a Hadoop cluster.
  2. Write the Mapper and Reducer code: In Python, you need to write the Mapper and Reducer functions. The Mapper function takes inputs and outputs key-value pairs, while the Reducer aggregates the outputs of the Mapper.
  3. Prepare input data: Ensure that the input data is stored on the Hadoop Distributed File System (HDFS). You can copy the input data from your local system to HDFS. Use the hdfs command line tool or a programming language like Python to interact with HDFS.
  4. Run the Hadoop Streaming job: Use the hadoop jar command to execute the Hadoop Streaming job. Specify the input and output paths, and provide the command for the Mapper and Reducer scripts. Set the input format, output format, and other relevant configurations.
  5. Monitor the job: You can monitor the progress of your Hadoop job using the Hadoop JobTracker or ResourceManager web user interface. It provides information about the input splits, map progress, reduce progress, and more.
  6. Retrieve the output: Once the job completes successfully, you can retrieve the output from the specified output path on HDFS. Again, you can use the hdfs command line tool or Python to interact with HDFS and retrieve the output data.
  7. Process the output: Depending on your requirements, you can post-process the output data in Python or perform further analysis.


By following these steps, you can connect Hadoop with Python and leverage the power of distributed computing for big data processing using Python's simplicity and flexibility.

Best Apache Hadoop Books to Read in 2024

1
Apache Hadoop YARN: Moving beyond MapReduce and Batch Processing with Apache Hadoop 2 (AddisonWesley Data & Analytics) (Addison-Wesley Data and Analytics)

Rating is 5 out of 5

Apache Hadoop YARN: Moving beyond MapReduce and Batch Processing with Apache Hadoop 2 (AddisonWesley Data & Analytics) (Addison-Wesley Data and Analytics)

2
Hadoop 2 Quick-Start Guide: Learn the Essentials of Big Data Computing in the Apache Hadoop 2 Ecosystem (Addison-wesley Data & Analytics Series)

Rating is 4.9 out of 5

Hadoop 2 Quick-Start Guide: Learn the Essentials of Big Data Computing in the Apache Hadoop 2 Ecosystem (Addison-wesley Data & Analytics Series)

3
Pro Apache Hadoop

Rating is 4.8 out of 5

Pro Apache Hadoop

4
Apache Hadoop 3 Quick Start Guide: Learn about big data processing and analytics

Rating is 4.7 out of 5

Apache Hadoop 3 Quick Start Guide: Learn about big data processing and analytics

5
Mastering Apache Hadoop: A Comprehensive Guide to Learn Apache Hadoop

Rating is 4.6 out of 5

Mastering Apache Hadoop: A Comprehensive Guide to Learn Apache Hadoop

6
Hadoop 2.x Administration Cookbook: Administer and maintain large Apache Hadoop clusters

Rating is 4.5 out of 5

Hadoop 2.x Administration Cookbook: Administer and maintain large Apache Hadoop clusters

7
Getting Started with Impala: Interactive SQL for Apache Hadoop

Rating is 4.4 out of 5

Getting Started with Impala: Interactive SQL for Apache Hadoop

8
Top 50 Apache Hadoop Interview Questions and Answers

Rating is 4.3 out of 5

Top 50 Apache Hadoop Interview Questions and Answers


How to write a MapReduce program in Python?

To write a MapReduce program in Python, you can follow these steps:

  1. Setup Hadoop: Make sure Hadoop is installed and configured on your system.
  2. Import necessary libraries: Import the required libraries, which include mrjob and sys.
1
2
from mrjob.job import MRJob
import sys


  1. Create a class for your MapReduce job: Create a class that inherits from MRJob and define the mapper and reducer functions.
1
2
3
4
5
6
7
class MyMapReduce(MRJob):

    def mapper(self, _, line):
        # Implement your mapper logic here

    def reducer(self, key, values):
        # Implement your reducer logic here


  1. Implement the mapper function: Implement the logic for the mapper function. This function takes two arguments, self and line, where line represents each line of input data.
1
2
3
4
5
    def mapper(self, _, line):
        words = line.split()
        
        for word in words:
            yield word, 1


  1. Implement the reducer function: Implement the logic for the reducer function. This function takes two arguments, self and values, where values represents the values associated with the key.
1
2
    def reducer(self, key, values):
        yield key, sum(values)


  1. Write the main driver function: Write a main function to handle input and output. For example, the code below reads data from the standard input and sends the output to the standard output.
1
2
if __name__ == '__main__':
    MyMapReduce.run()


  1. Run the MapReduce job: Use the mrjob command-line tool to run the MapReduce job.
1
python my_mr_job.py input.txt -r hadoop > output.txt


Note: Replace my_mr_job.py with the filename of your Python file, input.txt with the input data file, and output.txt with the output file name.


That's it! You have successfully written a MapReduce program in Python using the mrjob library. Remember to configure Hadoop appropriately and provide the correct input and output file paths.


What is the purpose of a Hadoop input format?

The purpose of a Hadoop input format is to define how input data is read and split into smaller chunks for processing by Hadoop. It determines how the input data is represented and delivered to the mappers for processing.


A Hadoop input format typically performs the following tasks:

  1. Decides how input data is divided into input splits, which are smaller portions of data that can be processed in parallel by different map tasks.
  2. Defines how a single input split is read and converted into key-value pairs, which are then passed to the mappers for processing.
  3. Optionally, performs any necessary transformations or conversions on the input data before it is processed further.


Different input formats can be used depending on the type and format of the input data. For example, the TextInputFormat is commonly used for reading plain text files, while the SequenceFileInputFormat is used for reading binary sequence files. Custom input formats can also be developed to handle specific data formats and processing requirements.


How to access Hadoop's web interface?

To access Hadoop's web interface, follow these steps:

  1. Start the Hadoop cluster.
  2. Open a web browser on your computer.
  3. Enter the URL or IP address of the Hadoop namenode with the appropriate port number. By default, the namenode's web interface runs on port 50070, so the URL would be something like: http://:50070/.


If your Hadoop cluster is set up in a distributed mode (with multiple namenodes or resourcemanager), you can access their web interfaces by replacing the <namenode-IP> with the appropriate IP address.

  1. Press Enter to access the web interface.
  2. You should now be able to see the Hadoop web interface, which provides various features and information about the Hadoop cluster.


Note: Some Hadoop distributions may have a different default port for the web interface, so make sure to check the documentation specific to your Hadoop distribution if the above port number doesn't work.

Facebook Twitter LinkedIn Telegram Whatsapp

Related Posts:

To start Hadoop in Linux, you need to follow these steps:Download and extract Hadoop: Visit the Apache Hadoop website and download the latest stable release of Hadoop. Extract the downloaded tarball to a directory of your choice. Configure Hadoop: Go to the ex...
To check the file size in Hadoop, you can use the following steps:Open the Hadoop command-line interface or SSH into the machine where Hadoop is installed. Use the hadoop fs -ls command to list all the files and directories in the desired Hadoop directory. For...
To change the default block size in Hadoop, you need to modify the Hadoop configuration file called &#34;hdfs-site.xml.&#34; This file contains the configuration settings for Hadoop&#39;s Hadoop Distributed File System (HDFS).Locate the &#34;hdfs-site.xml&#34;...
To list the files in Hadoop, you can use the Hadoop command-line interface (CLI) or Java API. Here&#39;s how you can do it:Hadoop CLI: Open your terminal and execute the following command: hadoop fs -ls Replace with the path of the directory whose files you w...
Adding users in Hadoop involves a few steps, which are as follows:Create a user account: Begin by creating a user account on the Hadoop system. This can be done using the standard user creation commands for the operating system on which Hadoop is installed. Cr...
To move files within the Hadoop HDFS (Hadoop Distributed File System) directory, you can use the hadoop fs command-line tool or any Hadoop API. Here&#39;s how you can do it:Open your command-line interface or terminal. Use the following command to move files w...